Global bifurcation problems associated with $k$-Hessian operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GLOBAL BIFURCATION PROBLEMS ASSOCIATED WITH k-HESSIAN OPERATORS

In this paper we study global bifurcation phenomena for a class of nonlinear elliptic equations governed by the h-Hessian operator. The bifurcation phenomena considered provide new methods for establishing existence results concerning fully nonlinear elliptic equations. Applications to the theory of critical exponents and the geometry of k-convex functions are considered. In addition, a related...

متن کامل

A Liouville-Gelfand Equation for k-Hessian Operators

In this paper we establish existence and multiplicity results for a class of fully nonlinear elliptic equations of k-Hessian type with exponential nonlinearity. In particular, we characterize the precise dependence of the multiplicity of solutions with respect to both the space dimension and the value of k. The choice of exponential nonlinearity is motivated by the classical Liouville-Gelfand p...

متن کامل

Submajorization inequalities associated with $tau$-measurable operators

The aim of this note is to study the submajorization inequalities for $tau$-measurable operators in a semi-finite von Neumann algebra on a Hilbert space with a normal faithful semi-finite trace $tau$. The submajorization inequalities generalize some results due to Zhang, Furuichi and Lin, etc..

متن کامل

THE k-HESSIAN EQUATION

The k-Hessian is the k-trace, or the kth elementary symmetric polynomial of eigenvalues of the Hessian matrix. When k ≥ 2, the k-Hessian equation is a fully nonlinear partial differential equations. It is elliptic when restricted to k-admissible functions. In this paper we establish the existence and regularity of k-admissible solutions to the Dirichlet problem of the k-Hessian equation. By a g...

متن کامل

BOUNDS FOR KAKEYA-TYPE MAXIMAL OPERATORS ASSOCIATED WITH k-PLANES

A (d, k) set is a subset of Rd containing a translate of every k-dimensional plane. Bourgain showed that for k ≥ kcr(d), where kcr(d) solves 2kcr−1 + kcr = d, every (d, k) set has positive Lebesgue measure. We give a short proof of this result which allows for an improved Lp estimate of the corresponding maximal operator, and which demonstrates that a lower value of kcr could be obtained if imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topological Methods in Nonlinear Analysis

سال: 1999

ISSN: 1230-3429

DOI: 10.12775/tmna.1999.023